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Phase diagram of the three-dimensional NJL model
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Abstract. With the exception of confinement the three-dimensional Nambu–Jona-Lasinio (NJL3) model
incorporates many of the essential properties of QCD. We discuss the critical properties of the model at
non-zero temperature T and/or non-zero chemical potential µ. We show that the universality class of the
thermal transition is that of the d = 2 classical spin model with the same symmetry. We provide evidence
for the existence of a tricritical point in the (µ, T )-plane. We also discuss numerical results by Hands et
al. which showed that the system is critical for µ > µc and the diquark condensate is zero.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 05.70.Fh Phase transitions: general
studies

1 Introduction

Phase transitions in QCD at non-zero temperature and/or
non-zero baryon density have been studied intensively over
the last decade both analytically and numerically. How-
ever, since the problem of chiral symmetry breaking and
its restoration is intrinsically non-perturbative, the num-
ber of available techniques is limited and most of our
knowledge about the phenomenon comes from lattice sim-
ulations. Because of the complexity of QCD with dynami-
cal fermions, studies so far have been done on lattices with
modest size and in various cases the results are distorted
by finite size and discretization effects.

The NJL model has been proved to be an interesting
and tractable laboratory to study chiral phase transitions
both numerically by means of lattice simulations and an-
alytically in the form of large-Nf expansions [1–9]. The
Lagrangian density of the U(1)-symmetric model is

L = ψ̄i(∂/ + m + σ + iγ5π)ψi +
Nf

2g2
(σ2 + π2), (1)

where the index i runs over Nf fermion flavors. There
are several features which make this model interesting
for the modelling of strong interactions: i) The spectrum
of excitations contains both “baryons” and “mesons”,
namely the elementary fermions f and the composite ff̄
states [10]. ii) For sufficiently strong coupling g2 > g2

c it
exhibits spontaneous chiral symmetry breaking implying
dynamical generation of a fermion mass mf , the pion field
π being the associated Goldstone boson. iii) For 2 < d < 4
there is an interacting continuum limit at a critical value
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of the coupling, which for d = 3 has a numerical value
g2

c/a ≈ 1.0 in the large-Nf limit if a lattice regularisa-
tion is employed [2]. There is a renormalisation group UV
fixed point at g2 = g2

c , signalled by the renormalisability of
the 1/Nf expansion [1], entirely analogous to the Wilson-
Fisher fixed point in scalar field theory. iv) Numerical
simulations with baryon chemical potential µ �= 0 show
qualitatively correct behavior, in that the onset of matter
occurs for µ of the same order as the constituent-quark
scale mf [3], rather than for µ ≈ mπ/2, which happens in
gauge theory simulations with a real measure det(M†M)
because of the presence of a baryonic pion in the spec-
trum. This makes NJL3 an ideal arena in which to test
strongly interacting thermodynamics.

In sect. 2 we discuss the universality of the T �= 0
transition [4,5]. In sect. 3 we present results from a study
of the phase diagram in the (µ, T )-plane [8] which support
the existence of a tricritical point on the line that separates
the chirally broken from the chirally symmetric phases.
We also discuss numerical results which support the non-
existence of a diquark condensate for µ > µc [9].

2 Universality at non-zero temperature

Although there is little disagreement that the chiral phase
transition in QCD with two massless fermions is second
order, no quantitative work or simulations have been done
that decisively determine its universality class. Universal-
ity arguments are very appealing due to their beauty and
simplicity. In essence they can be phrased as follows: At fi-
nite T phase transitions, the correlation length diverges in
the transition region and the long-range behavior is that
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Table 1. Summary of FSS results and comparison with 2d
Ising and mean-field scaling behavior.

Exponents FSS Z(2) MF

ν 1.00(3) 1 0.5
βm/ν 0.12(6) 0.125 1
γ/ν 1.66(9) 1.75 2

of the (d− 1) classical spin model with the same symme-
try, because the IR region of the system is dominated by
the zero mode of the bosonic field and the contribution
of non-zero modes does not affect the critical singulari-
ties but can be absorbed into non-critical, non-universal
aspects of the transition. Consequently, fermions, which
satisfy anti-periodic boundary conditions, and do not have
zero modes, are expected to decouple from the scalar sec-
tor. In another language, the classical thermal fluctuations
whose energy is O(KBT ) dominate over quantum fluctua-
tions with energy O(�ω) for soft modes of the field and the
effective (d− 1)-dimensional theory for the bosonic fields
near Tc is a classical statistical theory. A possible loophole
to this standard scenario is that the mesons are composite
ff̄ states and their size and density increase as T → Tc.
Therefore, if the transition region can be described as a
system of highly overlapping composites, the violation of
the bosonic character of the mesons may be maximal and
the fermions become essential degrees of freedom irrespec-
tive of how heavy they are. At leading order in 1/Nf the
model has a second-order phase transition at Tc = mf

2 ln 2 [4]
with Landau-Ginzburg mean-field scaling. We studied the
critical behavior of the Z2-symmetric model with finite
Nf by performing lattice simulations in the vicinity of the
critical point. The temporal lattice size was Lt = 6 and
the spatial size varied from Ls = 18 to 50. The expecta-
tion value of the auxiliary sigma field (Σ ≡ 〈σ〉) serves
as a convenient order parameter for the theory’s critical
point. We simulated the model exactly for Nf = 12 with
the Hybrid Monte Carlo method. The staggered fermion
lattice action and further details concerning the algorithm
can be found in [2]. By using the finite-size scaling (FSS)
method we extracted the critical exponents. The results
which are summarized in table 1 support the dimensional
reduction scenario, because the values of the exponents
are in good agreement with those of the 2d Ising model
rather than the mean-field theory ones.

Next we tried to understand how the large-Nf mean-
field theory prediction reconciles with the dimensional re-
duction and universality arguments. The answer is that
the large-Nf description has its applicability region. As
we discuss in detail for a Yukawa theory in [5] the phe-
nomenon which leads to an apparent contradiction is the
suppression of the width of the non–mean-field critical re-
gion by a power of 1/Nf . The 2d Ising critical behavior
sets in when T 	 mσ(T ) (mσ(T ) is the thermal mass of
the σ meson). If the cutoff Λ 	 T , the renormalized self-
interaction coupling λ(T ) in the large-Nf limit is close to
the IR fixed point of the Yukawa theory and is given by
λ(T ) ∼ T 4−d/Nf for 2 < d < 4. The mean-field approx-

Fig. 1. Σ(T, µ)/Σ(T, 0) vs. µ/mf at different values of T .

Fig. 2. η(µ)/mf vs. µ/mf at different values of T .

imation breaks down because of self-inconsistency when
the value of the coupling of the (d− 1)-dimensional scalar
theory λd−1 = Tλ(T ) on the scale m5−d

σ (T ) (the power
d − 5 comes from dimensional analysis) is not small any-
more. Therefore, for d = 3 the Ginzburg criterion for the
applicability of the mean-field scaling is given by mσ(T ) 	
T/

√
Nf . This scenario was verified numerically in [5].

Additional evidence in favor of the dimensional re-
duction scenario was produced in studies of the U(1)-
symmetric NJL3 model [6]. Both analytical and numer-
ical results showed that its phase structure at T �= 0 is
the same as the 2d XY model. It has two different chi-
rally symmetric phases, one critical and one with finite
correlation length, separated by a Berezinskii-Kosterlitz-
Thouless transition.

3 Results at non-zero chemical potential

The action of the NJL model remains real even after
the introduction of non-zero chemical potential µ, which
means we can study the physics of the high-density regime
using standard Monte Carlo techniques. In the presence of
a Fermi surface with Fermi momentum pF , the creation
of ff̄ pairs with zero net momentum is suppressed, be-
cause one can only create particles with p > pF . So as
the fermion number density η(µ) grows, the chiral sym-
metry breaking is suppressed. The large-Nf description of
the µ �= 0 chiral phase transition predicts a first-order
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Fig. 3. Fermion dispersion relation at µ = 0.8.

transition for T = 0 and a continuous transition for
T > 0 [4]. Furthermore, the critical value of the chemical
potential µc is equal to the value of the fermion mass at
µ = 0, which indicates that materialization of the fermion
itself drives the symmetry restoration transition. Inter-
actions as expected decrease µc below the mean-field re-
sult [3]. Work by Stephanov [7] suggests that any non-zero
density simulation which incorporates a real path integral
measure proportional to det(MM†) is doomed to failure
due to the formation of a light baryonic pion from a quark
q and a conjugate quark qc. The NJL model, however,
does not exhibit such a pathology, because the realization
of the Goldstone mechanism in this model is fundamen-
tally different from that in QCD. In the NJL model the
Goldstone mechanism is realized by a pseudoscalar chan-
nel pole formed from disconnected diagrams and the con-
nected diagrams yield a bound state of mass ≈ 2mf . This
implies the absence of a light qqc state.

As expected, our simulations of the Z2-symmetric
NJL3 with Nf = 4 [8] did not provide any evidence for
the existence of a nuclear liquid-gas transition at µ < µc.
It was shown in [11] that in the NJL model there is no sat-
uration density for stable matter. In order to get the sat-
uration features the authors of [11] introduced a chirally
invariant scalar-vector interaction term which cures the
binding problem. Furthermore, our results showed that
the second-order nature of the T �= 0, µ = 0 transition
remains stable down to low T and large µ. In fig. 1 we
plot the normalized order parameter Σ(T, µ)/Σ(T, 0) as
a function of µ/mf at different values of T . It is clear
from the shapes of these curves that the transition be-
comes sharper as we decrease the temperature. In fig. 2
we plot the normalized fermion number density as a func-
tion of the chemical potential at different values of T . In
the limit T → 0 we see that the fermion density is strongly
suppressed before the transition and then jumps discontin-
uously. By performing detailed finite-size scaling analysis
which allowed us to distinguish between second-order and
weak first-order transitions we showed that the tricritical
point lies on the section of the phase boundary defined
by T/Tc ≤ 0.23, µ/µc ≥ 0.97 [8]. This result shows that
higher-order corrections in the 1/Nf expansion for the na-
ture and the location of the transition points in the phase
diagram are small in this model.

It is well known that at high density the diquark
condensate is non-zero in models of strongly interacting
matter which either assume that the interaction between
quarks is due to one-gluon exchange [12], or by using ef-
fective four-fermion vertices resulting from the presence of
instantons in the QCD vacuum [13]. Unfortunately, the-
oretical studies of color superconductivity are limited to
perturbative and self-consistent methods, because of the
notorious “sign problem” in QCD. Hands et al. studied
numerically the (SU(2) ⊗ SU(2))-symmetric NJL3 and
found no evidence for a condensate 〈qq〉 �= 0 in the model’s
high-density phase. Their results with a non-zero diquark
source are consistent with a critical behavior 〈qq(j)〉 ∝ j

1
δ

throughout the dense phase with δ falling in the range 3–5
for the µ values studied. This suggests that the model is a
two-dimensional superfluid as first described by Kosterlitz
and Thouless for thin films of 4He but with the universal-
ity class determined by the presence of massless relativistic
fermions. Results for the dispersion relation E(k) in the
spin- 1

2 sector are shown in fig. 3. For k < kF the lowest
excitations vacate states in the Fermi sea, and hence are
“hole-like”, whereas for k > kF , excitations add quarks to
the system and are “particle-like”. There is no sign for any
discontinuity on the Fermi surface characteristic of a BCS
gap ∆ �= 0 in NJL3. However, recent numerical results
provided evidence that 〈qq〉 �= 0 in NJL4 [14].

4 Summary

We discussed the basic features of the phase diagram of
NJL3. The universality class of the T �= 0 transition is that
of the d = 2 classical spin model with the same symmetry.
The non-trivial critical region of the Z2-symmetric model
is suppressed by a factor 1/

√
Nf . The non-zero density

phase transition is strongly first order and the lattice sim-
ulations provided evidence for the existence of a tricritical
point on the critical line at small T and large µ. The sim-
ulations showed no evidence for the existence of non-zero
diquark condensate at T = 0 and µ > µc. The results are
consistent with a critical behavior throughout the dense
phase, suggesting that the model is a two-dimensional rel-
ativistic superfluid.
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